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Small-length scale multilayered structures are attractive materials due to their extremely high strength and
flexibility, relative to conventional laminated composites. In this study, nanolayered laminated composites
of Al and SiC were synthesized by DC/RF magnetron sputtering. The microstructure of the multilayered
structures was characterized, and the mechanical properties measured by nanoindentation testing. The
influence of layer thickness on Young’s modulus and hardness of individual and multilayers was quanti-
fied. An analytical model was used to subtract the contribution of the Si substrate, to extract the true
modulus of the films.
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1. Introduction

Nanomaterials are very promising materials that exhibit ul-
trahigh strength with decreasing grain size to the nanometer
scale (Ref 1-3). In particular, the strength of single and multi-
layered films has been shown to be significantly higher than
that of bulk materials. Single metallic films (Ref 4-11), multi-
layered metal films (Ref 10, 12, 13), metal-ceramic layered
composites (Ref 14-25), and ceramic-ceramic layered compos-
ites (Ref 26, 27) were investigated. A wide variety of process-
ing techniques were explored to synthesize single or multilay-
ered films at the nanoscale. These include chemical vapor
deposition (CVD), physical vapor deposition (PVD) (Ref
4-28), electroplating (Ref 29-31), and the sol-gel technique
(Ref 32, 33). Compared with other processes, PVD has the
advantage of simplicity, relatively low processing tempera-
tures, and a wide range of materials that can be processed. The
PVD process, particularly magnetron sputtering, has been used
to synthesize thin films of several metals, alloys, and ceramics.

Among metal-ceramic multilayered films, Al/Al2O3 has
been the most commonly studied system. It is typically pro-
cessed by reactive magnetron sputtering method by introducing
oxygen to form Al2O3 at predetermined intervals (Ref 14). A
limitation of the reactive sputtering, in this case, is the thick-

ness of Al2O3 is limited by the kinetics of oxidation of Al.
Similar methods for introducing reaction gases during metal
deposition have been used to produce ceramic reinforcement,
e.g., TiN (Ref 15, 21, 23), CrC (Ref 19), and CrN (Ref 25).
Direct sputtering of ceramic targets has not really been studied,
although metal-ceramic films containing MoSi2 (Ref 17) and
Bi2O3 (Ref 28) have been reported.

In this paper, processing and mechanical behavior results
are presented on a novel metal-ceramic system, Al-SiC. The
combination of Al and SiC were exploited to obtain high
strength and stiffness in conventional fiber reinforced (Ref 34),
particle reinforced composites (Ref 35), and bulk laminates
(Ref 36). This combination has not, however, been examined in
multilayers at the nanoscale. In this study, multilayered Al-SiC
composites, as well as single layers of Al and SiC, were syn-
thesized by direct current (dc) radio frequency (rf) magnetron
sputtering on Si (111) single-crystal wafers. Instrumented in-
dentation was used to probe the properties of single and mul-
tilayered materials.

2. Experimental Procedure

A magnetron sputtering system (Fig. 1) was used to deposit
the multilayered composite used in this study. Al and SiC
layers were deposited on Si (111) single-crystal wafers by dc
and rf power, respectively. Aluminum targets (>99.99% purity)
were sputtered at a dc power of 95 watts and Ar working
pressure of 3.0 mtorr. SiC layers were produced from a sintered
target (>99.5% purity) using identical argon pressure and an rf
power of 215 W. Prior to deposition, an average base pressure
in the range of 1.3 × 10−5 Pa was obtained. Target presputtering
was carried out to remove oxides or contaminants prior to film
deposition. The substrate was also rotated during deposition to
ensure a uniform nanolayer. Deposition rates for both materials
were obtained by producing a graded composite film. The de-
position time was continuously varied, starting with SiC and
then alternating layers of Al and SiC. Individual layer thick-
nesses were then measured from several scanning electron mi-
croscopy (SEM) micrographs. Figure 2(a) illustrates the com-
posite layers used in obtaining the deposition rates, and Fig.
2(b) shows the linear growth profiles for both Al and SiC.
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Deposition rates of approximately 7.5 and 3.9 nm/min were
obtained for Al and SiC, respectively.

Both multilayers of Al/SiC and single layers of Al and SiC
were deposited on Si wafers based on the deposition rates
obtained in Fig. 2(b). The thickness of the individual films was
varied between 100 and 1000 nm. Multilayers of Al-SiC had
seven total layers (three of SiC, each of 33 nm thickness, and
four of Al, each of 100 nm thickness). Nanoindentation was
carried out on both single-layered and mutilayered samples.
Approximately 30 indentations were made for each film at a
given thickness. Calibration of the indenter was conducted by
measuring the Young’s modulus and hardness of a silica stan-
dard. The continuous stiffness measurement (CSM) technique
was used during indentation (Ref 37, 38). This technique in-
volves the application of a harmonic, high frequency amplitude
force during indentation loading, and measurement of the con-
tact stiffness of the sample from the displacement response at
the excitation frequency. The Young’s modulus of the material
is then derived from the contact stiffness. In all measurements,
the Young’s modulus and hardness were evaluated as a func-

tion of depth. As a result of the influence of the Si substrate, the
Young’s modulus of the multilayers was extracted from the
experimental curves using the model by Gao et al. (Ref 39).

3. Results and Discussion

3.1 Indentation Behavior

The indentation behavior of single layers of Al and SiC is
described first. Figure 3 shows the load-displacement curves
for Al and SiC single layers with varying thickness. The influ-
ence of the Si (111) substrate is significant. For the Al layers,
which are softer than the Si substrate, at a given indentation
depth (e.g., 100 nm), the thinnest film exhibited the highest
load. The reverse was true of the SiC layers, which are stiffer
and harder than the Si substrate. The Young’s modulus of the
individual films as a function of indentation depth also showed
some interesting trends (Fig. 4). During instrumented indenta-
tion of bulk materials or even relatively thick films, the modu-
lus exhibits a “plateau” over the initial displacement range (Ref

Fig. 1 Schematic illustration of the magnetron sputtering system used in this study

Fig. 2 (a) Al-SiC multilayer composite with different thickness of layer, and (b) layer thickness versus deposition time of Al and SiC. The
extrapolated growth rate was used further for the fabrication of Al, SiC single layers, and Al-SiC multilayer.
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40, 41). In the films studied here, no visible stable region of
constant modulus was observed. This is attributed to the rela-
tively small thickness of the layers, which results in a signifi-
cant contribution of the substrate to the indentation behavior.
Consider that the Young’s modulus of the Al layers, indepen-
dent of thickness, increases continuously with the indentation
depth and tends to approach the Young’s modulus of the Si
substrate. For the SiC layer, the modulus decreased continu-
ously with indentation depth approaching the stiffness of the Si
substrate. Several models have been proposed that account for
the influence of substrate properties on the modulus of thin
films (Ref 39, 42-47). In this paper, the relation proposed by
Gao et al. (Ref 39) is used to extrapolate the Young’s modulus
of the film, Ef:

E − Es = �Ef − Es��Gao (Eq 1)

Fig. 3 Load-displacement curves for single layer of (a) Al, (b) SiC
with different thickness, and multilayer of (c) Al-SiC. Layer thickness
has a significant effect on the indentation behavior. The increased
thickness of softer layer (compared with Si substrate) leads to the
lower load-displacement behavior whereas for the harder layer, the
trends are on the contrary.

Fig. 4 Young’s modulus of (a) SiC and Al single layers, and (b)
Al-SiC multilayer as a function of indentation displacement. There is
no considerable plateau due to the influence from Si (111) substrate,
and Young’s modulus of all layers tends to approach the value of Si
substrate along with the displacement.
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where E is the measured composite (layer + substrate) modu-
lus, Es is the modulus of the substrate, and �Gao is a function
that is expressed as:

�Gao =
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�
arctan
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+

1

2��1 − �� ��1 − 2��
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x
ln�1 + x2� −

x

1 + x2�
(Eq 2)

where x � a/t, a is the mean radius of the projected contact
area, which is a linear function of indentation depth, t is the
film layer thickness, and � is the Poisson’s ratio of film. E is
measured experimentally, and Es for Si (111) substrate is about
180 GPa (Ref 48). The calculated values of the Young’s modu-
lus of SiC and Al nanolayer are shown in Table 1. Young’s
modulus is independent of layer thickness for both Al and SiC.
This indicates that the defect population in the film does not
appear to be a function of film thickness. Young’s modulus of
both Al and SiC is significantly lower than that of their bulk
counterparts (Ref 49). This can be attributed to intrinsic defects
formed during processing, such as nanovoids (Ref 10). In ad-
dition, preliminary x-ray diffraction (XRD) measurements in-
dicate that the Al films are highly textured (Ref 50), which is
consistent with other research (Ref 51). Furthermore, XRD and
preliminary transmission electron microscopy (TEM) work in-
dicate that the SiC films are amorphous/nanocrystalline. The
amorphous structure of SiC is likely caused by the low pro-
cessing temperature used here. In this study, the processing
temperature was less than 200 °C. Leiste et al. (Ref 52) pro-
duced SiC films by the rf sputtering method, and their XRD
analysis shows that the SiC remains amorphous up to a pro-
cessing temperature of 500 °C.

Hardness measurements were also obtained from indenta-
tion for both Al and SiC (Fig. 5). Due to the influence of the Si
substrate, the measured hardness also varied significantly with
indentation depth. The hardness of Al increased with indenta-
tion depth due to the higher pileup in the Al caused by the
harder Si substrate (Ref 44). The hardness also increased with
decreasing thickness of the Al layer. In the early stages of
indentation, there was some scatter in the measured hardness,
especially for thickness of 100 and 200 nm. The roughness of
Al surface (Fig. 6), may have contributed to this scatter, as
documented by Bouzakis et al. (Ref 53). The hardness of SiC
decreased with indentation depth as a result of the early onset
of yielding of the Si substrate (Ref 44). Both the 1000 nm Al
and 1000 nm SiC exhibited a plateau in hardness between 100
and 200 nm of indentation depth. The pileup effect for the Al
layers or the yielding of Si for SiC layers is not significant at
this depth range, so the hardness value of Al and SiC nanolayer
was calculated as the average in this range, as shown in Table
1. The hardness for Al and SiC of 200 nm thickness, taken
between 20 and 40 nm, is also listed in Table 1 to show the
effect of film thickness. Compared with Al at 1000 nm, the 200
nm thick layer had a much higher hardness. This is mainly due

to the influence from the harder Si substrate. For SiC, the
hardness varies very little with film thickness, because the
influence of the Si substrate is not as significant.

The indentation load-displacement curve for Al-SiC multi-
layers is shown in Fig. 3(c). The Young’s modulus versus
depth plot (Fig. 4b), did not exhibit a stable plateau, perhaps
due to the influence of the Si substrate, so the model from Gao
et al. (Ref 39) was used to extrapolate the Young’s modulus of
multilayers of Al-SiC. The hardness-displacement curve, Fig.
5(c) does show a plateau between 50 and 100 nm. The hardness
of multilayers of Al-SiC was extracted as the average of the
hardness at this depth range. Table 1 shows that the magnitude
of both Young’s modulus and hardness of Al-SiC multilayer is
between that of Al and SiC single layer. The indentation mor-
phology of the Al-SiC multilayer is shown in Fig. 7. The in-
denter has completely penetrated the multilayer and gone into
the Si substrate. Significant pileup is observed at the edge of
indentation, mainly due to the plastic deformation of Al layer.

The Young’s modulus of the Al-SiC multilayer Ec can be
modeled by a simple rule-of-mixtures because the Al and SiC
are in an isostrain condition. The Young’s modulus of the Al
layer, EAl, and SiC layer, ESiC, the volume fraction of Al, VAl,
and SiC layer, VSiC, are known. The modulus is then given by:

Ec = EA1VAl + ESiCVSiC (Eq 3)

Taking the data in Table 1 for EAl (43 GPa), ESiC (281 GPa),
and VAl 0.8, VSiC 0.2 from the layer thickness, Eq 3 gives
Ec � 91 GPa, which is somewhat higher than the experimental
value of 71 GPa.

It is interesting to compare the mechanical properties of the
single layers in this study with other studies, although direct
comparisons to measurements from other researchers is often
complicated by factors such as grain size, texture, defects,
strain rate, and impurity content (Ref 6). Read et al. (Ref 6)
deposited 1 �m thick Al layer on Si wafer by electron beam
evaporation process. The free standing Al layer for testing was
obtained by etching off the Si substrate. Young’s modulus
measurements, from tensile tests, varied between 24 and 30
GPa. Kang et al. (Ref 7) deposited 60-480 nm thick Al on
Kapton by magnetron sputtering. They found a strong (111)
texture in the Al film. The Young’s modulus extrapolated from
the tensile stress-strain curve was about 20.8 GPa. Haque and
Saif (Ref 8) produced 30 and 50 nm thick freestanding Al by
sputtering process. Their TEM observation did not show any
pores or voids within the material. Their Young’s modulus
values, also measured in tension, were as high as 60 GPa. The
values for Al films are in the range reported in the literature
(∼43 GPa). As mentioned above, this may be attributed to the
presence of nanovoids. Young’s modulus measurements of SiC
films are scarce. The Vickers hardness of SiC studied by Leiste
et al. (Ref 52) and Seo et al. (Ref 54), which appears to be the
same for crystalline or amorphous structure, varied between 24
and 28 GPa. These hardness results are similar to the values
reported here.

Very little work, if any, has been done on the mechanical
behavior of Al-SiC nanolayers. Other investigated metal-
ceramic nanolayer systems include Al-Al2O3 (Ref 14, 16) and
Mo-Al2O3 (Ref 17). Mearini and Hoffman (Ref 16) produced
pure Al, Al2O3, as well as Al-Al2O3 nanolayer by the PVD
process. The Al2O3 layers had an amorphous structure and very
low Young’s modulus (107-110 GPa). The Young’s modulus
of Al-Al2O3 nanolayer (total thickness 182-328 nm, 30 layers

Table 1 Young’s modulus and hardness of Al and SiC
nanolayers and Al-SiC multilayer

Layer Young’s modulus, GPa Hardness, GPa

Al (200 nm) 43 ± 13 1.06 ± 0.21
Al (1000 nm) 43 ± 12 0.68 ± 0.09
SiC (200 nm) 280 ± 14 25.7 ± 1.4
SiC (1000 nm) 281 ± 6 25.9 ± 0.9
Al-SiC multilayer 71 ± 17 2.4 ± 0.3
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Al2O3, about 50 vol.% Al2O3) was 68 GPa and ultimate tensile
strength (UTS) varied between 122 and 414 MPa. Alpas et al.
(Ref 14) conducted tensile tests on Al/Al2O3 nanolayers with
different Al layer thickness (Al2O3 layer thickness was less
than 10 nm). The yield strength of 450 MPa was achieved
when the Al layer thickness was 50 nm and the strength de-
creased to 180 MPa when the Al layer thickness increased to
500 nm. Chou et al. (Ref 17) fabricated Mo-Al2O3 nanolayers
as well as Mo and Al2O3 monolithic layer on Si (111) by dc and
rf reactive sputter deposition. TEM observation showed that
Al2O3 was amorphous with some crystalline islands whereas
Mo was polycrystalline. Nanoindentation tests showed that
Young’s modulus of Al2O3 was about 150 GPa and the hard-
ness 9.5 GPa. Mo-Al2O3 nanolayer has 50 vol.% Al2O3 with
different interlayer spacing (5-100 nm). 100 nm interlayer
spacing yielded the highest Young’s modulus (250 GPa) and
hardness (16 GPa).

The Hall-Petch equation had an extremely high prediction
of yield strength, which is typically not observed in nanostruc-
tured materials. It is possible that the intrinsic defects during
processing resulted in a much lower strength than the Hall-
Petch prediction. For nanolayered composite, interlayer spac-
ing appears to be the most significant factor in determining the

Fig. 5 Hardness versus indentation displacement for single layer of
(a) aluminum and (b) SiC nanolayer with different thickness, and
multilayer of (c) Al-SiC. A very short plateau shows up at the begin-
ning of indentation. Thicker layers have more stable and longer pla-
teau.

Fig. 6 Surface of Al nanolayer. The roughness of surface may con-
tribute to the scatter in hardness at early stages of nanoindentation.

Fig. 7 Indentation morphology of Al-SiC multilayer. Significant
pileup takes place at the edges of the indentation due to the plastic
deformation of Al.
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strength. Koehler (Ref 55) and Lehoczky (Ref 56) gave a more
effective strengthening mechanism compared with Hall-Petch
relation for laminated composites. In Lehoczky’s model, there
is a critical value of interlayer spacing �c, the yield strength of
nanolayered composite is proportional to �−1 when � > �c.
When � < �c, the yield strength remains constant or decreases.
Further investigation of the effect of Al-SiC nanolayer thick-
ness is important.

4. Conclusions

The following conclusions can be made from this study of
the nanoindentation behavior of Al, SiC, and Al-SiC multilay-
ers on the nanoscale:

• Al, SiC, and Al/SiC nanolayered composites were synthe-
sized by dc/rf magnetron sputtering process.

• Nanoindentation showed that the Young’s modulus of Al
and SiC nanolayer were lower than that of bulk materials.
The presence of defects may have contributed to the lower
elastic modulus.

• Multilayered Al/SiC exhibited much higher Young’s
modulus and hardness than the pure Al layer.
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